TAREA 4 - 1

- Suponga que $\phi = 2xz^4 x^2y$. Encuentre $\nabla \phi$ y $\|\nabla \phi\|$ en el punto (2,-2,-1) .
- Suponga que $\mathbf{a} = 2x^2\mathbf{i} 3yz\mathbf{j} + xz^2\mathbf{k}$ y $\phi = 2z x^3y$. Encuentre $\mathbf{a} \cdot \nabla \phi$ y $\mathbf{a} \times \nabla \phi$ en el punto (1, -1, 1).
- Suponga que $f=x^2z+e^{y/x}$ y $g=2z^2y-xy^2$. Determine
 - a. $\nabla (f+g)$
 - **b.** $\nabla (fg)$

en el punto (1,0,-2).

- **4.** Encuentre $\nabla \|\mathbf{r}\|^3$.
- **5.** Evalúe $\nabla \left(3r^2 4\sqrt{r} + \frac{6}{\sqrt[3]{r}}\right)$.
- Encuentre $\nabla \psi$, donde $\psi = (x^2 + y^2 + z^2)e^{-\sqrt{x^2 + y^2 + z^2}}$
- Sea $\nabla \phi = 2xyz^3 \mathbf{i} + x^2z^3 \mathbf{j} + 3x^2yz^2 \mathbf{k}$. Encuentre $\phi(x, y, z)$ si $\phi(1, -2, 2) = 4$.
- Suponga que $\nabla \psi = (y^2 2xyz^3)\mathbf{i} + (3 + 2xy x^2z^3)\mathbf{j} + (6z^3 3x^2yz^2)\mathbf{k}$. Determine ψ .
- Encuentre un vector unitario que sea perpendicular a la superficie del paraboloide de revolución $z = x^2 + y^2$ en el punto (1,2,5).
- **10.** Determine la normal unitaria trazada hacia fuera de la superficie $(x-1)^2 + y^2 + (z+2)^2 = 9$ en el punto (3,1,-4).
- **11.** Encuentre una ecuación para el plano tangente a la superficie $xz^2 + x^2y = z 1$ en el punto (1, -3, 2).
- **12.** Encuentre ecuaciones para el plano tangente y la recta normal a la superficie $z = x^2 + y^2$ en el punto (2,-1,5).
- **13.** Encuentre la derivada direccional de $\phi = 4xz^3 3x^2y^2z$ en (2,-1,2) en la dirección $2\mathbf{i} 3\mathbf{j} + 6\mathbf{k}$.
- **14.** Encuentre la derivada direccional de $P = 4e^{2x-y+z}$ en el punto (1,1,-1) en dirección hacia el punto (-3,5,6).
- **15.** ¿En qué dirección desde el punto (1,3,2) es un máximo la derivada direccional de $\phi = 2xz y^2$? ¿Cuál es la magnitud de este máximo?
- **16.** Encuentre los valores de las constantes a, b y c, de modo que la derivada direccional de $\phi = axy^2 + byz + cz^2x^3$ en (1,2,-1)tenga un máximo de magnitud 64 en una dirección paralela al eje z.
- **17.** Encuentre el ángulo agudo entre las superficies $xy^2z = 3x + z^2$ y $3x^2 y^2 + 2z = 1$ en el punto (1, -2, 1).
- **18.** Encuentre las constantes a, b y c de modo que la superficie $ax^2 byz = (a+2)x$ sea ortogonal a la superficie $4x^2y + z^3 = 4$ en el punto (1,-1,2).

The Aller Andrews