TAREA 2 – 4

EL PLANO

En los ejercicios 1-6, obtenga una ecuación cartesiana del plano que pasa por el punto a y que tiene el vector normal $\mathbf n$ dado.

1.
$$a(1,2,3)$$
, $\mathbf{n} = (-1,3,5)$

2.
$$a(2,-1,4)$$
, $\mathbf{n} = (2,3,-1)$

2.
$$a(2,-1,4)$$
, $\mathbf{n} = (2,3,-1)$
3. $a(-1,-1,-1)$, $\mathbf{n} = (3,4,-5)$
5. $a(0,0,0)$, $\mathbf{n} = (1,0,0)$
6. $a(2,2,-2)$, $\mathbf{n} = (0,1,2)$

4.
$$a(2,-1,0)$$
, $\mathbf{n} = (2,-1,-2)$ **5.** $a(0,0,0)$, $\mathbf{n} = (1,0,0)$

5.
$$a(0,0,0)$$
, $\mathbf{n} = (1,0,0)$

6.
$$a(2,2,-2)$$
, $\mathbf{n} = (0,1,2)$

En los ejercicios 7 – 12, obtenga una ecuación cartesiana del plano que pasa por los puntos a, b y c. (Use como punto conocido al punto a y $\mathbf{n} = \overline{ab} \times \overline{ac}$)

7.
$$a(3,4,1), b(-1,-2,5), c(1,7,1)$$
 8. $a(3,1,4), b(2,1,6), c(3,2,4)$

8.
$$a(3,1,4), b(2,1,6), c(3,2,4)$$

9.
$$a(2,1,3), b(-1,-2,4), c(4,2,1)$$

10.
$$a(3,2,1), b(1,3,2), c(1,-2,3)$$

11.
$$a(4,2,1)$$
, $b(-1,-2,2)$, $c(0,4,-5)$

10.
$$a(3,2,1), b(1,3,2), c(1,-2,3)$$
 11. $a(4,2,1), b(-1,-2,2), c(0,4,-5)$ **12.** $a(-1,-2,-1), b(-3,-1,-4), c(1,2,3)$

En los ejercicios 13-18, obtenga las ecuaciones simétricas de las rectas que pasa por el punto a y que es perpendicular al plano cuya ecuación se da.

13.
$$a(1,-3,4): x-3y+2z=4$$

14.
$$a(-2,1,3)$$
; $x+2y-2z-5=0$

15.
$$a(1,-1,2)$$
; $4x-3y+2z-7=0$

13.
$$a(1,-3,4); x-3y+2z=4$$
 14. $a(-2,1,3); x+2y-2z-5=0$ **15.** $a(1,-1,2); 4x-3y+2z-7=0$ **16.** $a(1,-2,-3); x-3y+2z+4=0$ **17.** $a(3,-1,4); 2x+2y-z=4$ **18.** $a(-6,4,1); 3x-2y+5z+8=0$

17.
$$a(3,-1,4)$$
; $2x+2y-z=4$

18.
$$a(-6,4,1)$$
; $3x-2y+5z+8=0$

19. Obtenga una ecuación del plano que bisecta perpendicularmente al segmento cuyos extremos son a(4,7,-1) y b(6,-1,5).

20. Obtenga una ecuación del plano que bisecta perpendicularmente al segmento cuyos extremos son a(0,-1,-4) y b(-2,3,0)

21. Obtenga una ecuación del lugar geométrico del tercer vértice de todos los triángulos isósceles cuya base tiene los extremos a(3,1,-2) y b(-1,3,0) ¿Cuál es este lugar geométrico?

22. Obtenga una ecuación del lugar geométrico del tercer vértice de todos los triángulos isósceles cuya base tiene los extremos a(3,6,-2) y b(5,-2,4) ¿Cuál es este lugar geométrico?

23. Las ecuaciones de las intersecciones del plano P con el plano xy y el plano yz son 2x-y=7, z=0 y y+3z=-7, x=0respectivamente. Obtenga una ecuación de este plano.

24. Las ecuaciones de las intersecciones del plano P con el plano xy y el plano yz son x-4y=12, z=0 y 2y+5z=-6, x=0respectivamente. Obtenga una ecuación de este plano.

25. Obtenga una ecuación del plano que contiene a las rectas que se cortan cuyas ecuaciones son

$$\frac{x-1}{2} = \frac{y+3}{4} = \frac{z}{7}$$
 \forall $\frac{x-1}{-1} = \frac{y+3}{5} = \frac{z}{-2}$

26. Obtenga una ecuación del plano que contiene a las rectas que se cortan dadas por las ecuaciones

$$\frac{x}{3} = \frac{y-1}{-1} = \frac{z+2}{3}$$
 y $\frac{x}{-1} = \frac{y-1}{2} = \frac{z+2}{-5}$

27. Demuestre que las rectas cuyas ecuaciones simétricas son

$$\frac{x-5}{3} = \frac{y+1}{-4} = \frac{z}{2}$$

TAREA 2 – 4

es perpendicular al plano con ecuación cartesiana

$$3x - 4y + 2z = 7$$

28. Demuestre que la recta con ecuaciones paramétricas cartesianas

$$x = -3 - 2r$$
, $y = -4 - 7r$ y $z = 3r$

es paralela al plano que tiene como ecuación cartesiana

$$4x-2y-2z=9$$

29. Obtenga una ecuación del plano que contiene al punto a(0,2,1) y también a la recta dada por las ecuaciones simétricas

$$\frac{x-1}{3} = \frac{y+2}{5} = \frac{z-3}{2}$$

30. Obtenga una ecuación del plano que contiene al punto a(3,-2,1) y también a la recta dada por las ecuaciones simétricas

$$\frac{x+2}{1} = \frac{y-5}{-1} = \frac{z}{6}$$

Waller Arter Street